
Introduction to Python and Conda on HPC

Hui (Julia) Zhao
NJIT High Performance Computing

Outline

• Why High Performance Computing
• How to access Python on Wulver at HPC
• Introduction to Conda environments
• Install, uninstall and upgrade packages
• Best Practices for managing conda environments
• Common Python libraries for scientific computing

Why High Performance Computing?

• Handling Complex Problems
• Big Data Analysis
• Speeding up Research
• Parallel Computing
• Resource Sharing and Collaboration

Python in High Performance Computing

• Clear Syntax
• Extensive Libraries
• Multi-language Integration
• Parallel Computing Capabilities
• Strong Community Support

Python on Wulver

Installing Python packages

Method 1: Installing Python Packages from Source

python setup.py install --prefix=</path/to/install/location>

git clone https://github.com/pandas-dev/pandas.git

python setup.py install --prefix=/project/$GROUP/$USER/python_pkg/

Traceback (most recent call last):
File "/usr/lib64/python3.6/site-packages/numpy/core/__init__.py", line 16, in
<module>
from . import multiarray
ImportError: libopenblasp.so.0: cannot open shared object file: No such file or
directory

Installing Python packages Cont.

Method 2: pip

• pip stands for "preferred Installer Program"
• a package manager for Python packages only
• pip installs packages that are hosted on the Python Package Index or PyPI
• python -m pip install --user <python module name> --no-cache-dir

-m <module-name>, always use “python -m pip”. It executes pip using the Python
interpreter you specified as python
--user flag tells pip to install to the user’s $HOME directory, where users have full
permissions.

Method 3: Conda

https://pypi.org/

Conda on HPC

• Introduction to Conda

• Conda environment

• Conda channels

• Conda packages

• Sharing environments

Introduction to Conda

● What is Conda?
● A package, dependency, and environment management system.
● Suitable for multiple languages, predominantly Python.

Why use Conda?

● Why use Conda?
● Simplifies package management and deployment.
● Ensures consistent environments.

Anaconda vs Miniconda vs Conda

Anaconda vs Miniconda

Anaconda and Miniconda are both Python distributions that come with a package manager
called Conda.

Anaconda is a more comprehensive distribution than Miniconda. It comes with over 150 pre-
installed packages, including many popular data science libraries such as NumPy, SciPy, and
Pandas. This makes it a good choice for beginners who want to get started with data science
quickly.

Miniconda is a smaller, more lightweight distribution than Anaconda. It only comes with Conda
and a few other essential packages. This makes it a good choice for experienced users who
want to have more control

Conda is a powerful tool that allows you to install, update, and remove Python packages.

Load the Anaconda Module on
Wulver

Use ‘module list’ to check if the correct modules are loaded

What is Anaconda

$module whatis Anaconda3
Anaconda3/2023.09-0 : Description: Built to complement the rich, open source Python
community,
the Anaconda platform provides an enterprise-ready data analytics platform
that empowers companies to adopt a modern open data science analytics
architecture.

Anaconda3/2023.09-0 : Homepage: https://www.anaconda.com
Anaconda3/2023.09-0 : URL: https://www.anaconda.com

Conda info

Conda on HPC

• Introduction to Conda

• Conda environment

• Conda channels

• Conda packages

• Sharing environments

Why create a Conda environment?
1. Isolation from other projects
2. Control Over Packages

● Manage versions and dependencies.
3. Reproducibility

● Consistent setups across systems.
4. Dependency Management

● Handles Python and non-Python dependencies.
5. Python Versatility

● Manage and switch Python versions easily.
6. Ease of Use

● User-friendly commands for project management.
7. Cross-Platform

● Works on Linux, Windows, and macOS.

Commonly used Conda commands

Conda cheat sheet - Link to Conda Doc for more helpful commands

https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf

Creating Conda Environment

Creating a new conda environment
$ conda create --name my_env

Creating a new conda environment with a specific python version
$ conda create --name my_env python=3.9

Creating a new conda environment with a specific python version and scipy
package
$ conda create --name my_env python=3.9 scipy=0.15.0

Creating a new conda environment in difference location with --prefix or -p
$ conda create --prefix /project/$GROUP/$USER/env_ABC AAA

Enter, Exit and Remove conda environment

Entering a Conda environment
$ conda activate my_env
(my_env) $:
$ conda activate /project/$GROUP/$USER/env_ABC

Exiting a Conda environment we are currently in

$ conda deactivate

Removing a Conda environment
$ conda env remove -n my_env

List Anaconda virtual environments

A user may list all shared virtual environments and your own private virtual environments

Conda on HPC

• Introduction to Conda

• Conda environment

• Conda channels

• Conda packages

• Sharing environments

What is a channel in Conda
A channel is the location where packages are stored remotely.

When you install Conda for the first time, it comes with a channel called default.
$ conda config --show channels

You can add a channel to the list of channels using the conda config --add channels
$ conda config --add channels conda-forge

More on Channels later …

Configuring Conda channels
How can I see conda’s configuration values?
$ conda config --help

$ conda config --show
$ conda config --show channels

channels:
- defaults

$conda config --describe channels

$conda config --add channels conda-forge
This would add the conda-forge channel to the top of the channel list.

$conda config --append channels conda-forge
This would add the conda-forge to the end of the channel list, giving it the lowest priority.

Conda on HPC

• Introduction to Conda

• Conda environment

• Conda channels

• Conda packages

• Sharing environments

Check Conda packages
List All Installed Packages:

● conda list
● This command displays all packages installed in the active Conda environment.

List Packages in a Specific Environment:
● conda list -n env_name or conda list -p /path/to/environment

Search for a Package:
● conda search package_name
● This command searches for a package across all channels in Conda.

Check for Specific Package Installation:
● conda list | grep package_name
● This command filters the list of installed packages to show only the entries related to

package_name.

List packages in all environments

List packages in an environment

List the installed packages for the present environment
(myenv) $ conda list

Installing Conda packages

1. Entering a Conda environment
$ conda activate my_env
(my_env) $: conda install scipy=1.6 --channel conda-forge

2. Create an environment called my_biowork-env and install blast from the bioconda channel:

$ conda create --name my_biowork-env blast --channel bioconda

3. The name flag can be used to specify the environment in which we install the package
$ conda install -n my_env scipy

4. $ conda install conda-forge::tensorflow --prefix /project/$GROUP/$USER/my_env

Mamba
Mamba is a reimplementation of the conda package manager in C++ for
maximum efficiency

●Parallel downloading of repository data and packages files using multi-
threading

●Libsolv for much faster dependency solving

●Conceived as a drop-in replacement for conda

●Same commands as conda

●Robust and fast but not 100% drop-in replacement yet (especially for conda-
env commands)

https://mamba.readthedocs.io/en/latest/

https://mamba.readthedocs.io/en/latest/

Mamba on Wulver

Conda on HPC

• Introduction to Conda

• Conda environment

• Conda channels

• Conda packages

• Sharing environments

Exporting Conda environment
Export a conda environment to a new directory or a different machine

1. activate the environment first that you intend to export.
2. export it to a YAML file:

$ conda env export > my_environment.yml

Importing an environment on a new machine

On the new machine,
1. First load Anaconda and initialize conda as before.
2. Then, create the environment from the YAML file:

Importing Conda environment to a new location

If you want to import the conda environment to a different location, use the --prefix or -p option
$ conda env create -f my_environment.yml -p /project/$GROUP/$USER/conda_env/my_env
This will create the environment in the specified directory instead of the default conda
environment directory.

You need to provide the full path of the environment to activate it.
$ conda activate /project/$GROUP/$USER/conda_env/my_env
$ conda env list
conda environments:
#
base /apps/easybuild/software/Anaconda3/2023.09-0
* /project/$GROUP/$USER/conda_env/my_env

Updating a Conda environment
When to update your conda environment?

● One of your core dependencies just released a new version
● You need an additional package for data analysis (add a new dependency).
● You have found a better visualization package and no longer need to old

visualization package

Update the contents of your environment.yml file and run the following command:

$ conda env update --file environment.yml --prune
--prune option tells Conda to remove any dependencies that are no longer required from
the environment

Best practices
Use interactive sessions on compute node
Use an interactive session on a compute node to install software with Conda to avoid slowing down the
login node
$ srun -p general -n 1 --qos=standard --account=PI_ucid --mem-per-cpu=2G --time=59:00 --pty bash
#modify srun options as desired

Use /project directory with large quotas
Use /project directory other than the home directory for conda environments and packages. Using your
home directory can fill its limited space.

Managing Conda Cache and changing the default caching behavior

Avoid installing packages into your base Conda environment

Managing Conda Cache

Default location for Conda cache files is the user's home directory. This can be changed by setting the
pkgs_dirs entry in the .condarc file or setting the CONDA_PKGS_DIRS environment variable.

$ conda info
package cache : /apps/easybuild/software/Anaconda3/2023.09-0/pkgs

/home/$USER/.conda/pkgs
The package cache entry will display the current package cache directories. Editing/creating the pkgs_dirs
entry in the .condarc file will change the cache directory:
pkgs_dirs:

- /path/to/desired/cache/directory

You can also do one of the following:
• run command “conda config --add pkgs_dirs /project/$GROUP/$USER/conda_env/pkgs_dirs”
• setting the CONDA_PKGS_DIRS environment variable:

export CONDA_PKGS_DIRS=/path/to/desired/cache/directory

Use “conda info” to confirm the change
To see the many additional configuration options, check the official .condarc user guide here

https://docs.conda.io/projects/conda/en/latest/user-guide/configuration/use-condarc.html

Pip vs Conda

If your package exists on PyPI and Anaconda, how do you decide which to
install from?

• Always favor conda over pip
• Conda (+Pip): Conda wherever possible; Pip only when necessary
• conda packages are pre-compiled and their dependencies are

automatically handled.
• pip installs will often download a binary wheel (pre-compiled), the

user frequently needs to take action to satisfy the dependencies.
• One disadvantage of conda packages is that they tend to lag behind

pip packages in terms of versioning.

Pip installs in a Conda environment
Recommend

• Use conda environments for isolation
• Use pip only after conda, avoid installing conda packages

after doing pip installs within a Conda environment.
$ conda create --name my_env pandas
$ conda activate my_env
(my_env)$ python -m pip install --user multiregex

● Recreate the entire environment if changes are needed after
pip packages have been installed

● Use the --no-cache-dir option for pip installation commands to
prevent pip filling your home directory with cached data

● Refer to Conda guide for using pip in a Conda environment

https://www.anaconda.com/blog/using-pip-in-a-conda-environment
https://www.anaconda.com/blog/using-pip-in-a-conda-environment
https://www.anaconda.com/blog/using-pip-in-a-conda-environment

Common Python libraries for scientific computing
Library Key Features Common Use Cases

Numpy Multidimensional arrays, Broadcasting,
Vectorization

Mathematical operations, Basic statistics

SciPy Numerical integration, Optimization,
Linear algebra

Solving differential equations, Signal
processing

Matplotlib 2D and 3D plotting, Customizable plots Visualizing data, Scientific charts

Pandas DataFrame and Series, Data
manipulation, Cleaning

Data analysis, Time series analysis

Scikit-learn Machine learning algorithms, Data
preprocessing tools

Classification, Regression, Clustering

TensorFlow Computational graph, Automatic
differentiation

Building deep learning models, Neural
networks

PyTorch Dynamic computational graph,
TorchScript for deployment

Machine learning, Computer vision

Example - install tensorflow-gpu

https://hpc.njit.edu/Software/programming/python/conda/#install-tensorflow-with-gpu

$conda create --name tensorflow python=3.9
$conda activate tensorflow
$conda install -c anaconda tensorflow-gpu numpy=1.21.6

Simple TensorFlow test program to make sure the virtual env can access a GPU.

https://hpc.njit.edu/Software/programming/python/conda/

Example - Install PyTorch with GPU
$conda create --name torch-cuda python=3.7
$conda activate torch-cuda
$conda install -c "nvidia/label/cuda-11.7.0" cuda-toolkit
$conda install -c pytorch -c nvidia pytorch torchvision torchaudio pytorch-cuda=11.7

https://hpc.njit.edu/Software/programming/python/conda/#install-tensorflow-with-gpu

https://hpc.njit.edu/Software/programming/python/conda/

Connect with Us

Open a ticket using email: hpc@njit.edu

Request Software: HPC Software Installation

Consult with Research Computing Facilitator: HPC User Assistance

Further information: HPC at NJIT

mailto:hpc@njit.edu
https://njit.service-now.com/sp?id=sc_cat_item&sys_id=0746c1f31b6691d04c82cddf034bcbe2&sysparm_category=405f99b41b5b1d507241400abc4bcb6b
https://njit.service-now.com/sp?id=sc_cat_item&sys_id=0746c1f31b6691d04c82cddf034bcbe2&sysparm_category=405f99b41b5b1d507241400abc4bcb6b
https://scheduler.zoom.us/d/2k-yd02b/research-computing-facilitator-user-assistance
https://scheduler.zoom.us/d/2k-yd02b/research-computing-facilitator-user-assistance
https://hpc.njit.edu/

Questions?

