
Introduction to Containers

Hui (Julia) Zhao

NJIT High Performance Computing

Outline

• What is a container?

• Container Engines and Registries

• Running and Managing pre-made Containers

• Container Security

• Integrating Containers with HPC Workflows

2

What is a Container?

A container is a self-contained entity that provides an isolated software
environment for applications and their dependencies.

• Isolate computing environments

• Containers’ OS running over host OS

- Containers’ OS can be different from host’s OS

- Containers leverage the host for low-level operations (kernel,

network, I/O)

- From user’s view, containers’ OS behave like standard OS

3

Containers vs Virtual Machine

Source: https://pawseysc.github.io/hpc-container-training/11-containers-intro/index.html

4

Containers vs Virtual Machine - cont

VMs virtualize hardware while containers virtualize operating systems.

Containers are:
● lighter weight to run (less CPU and memory usage, faster start-up times)

● smaller in size (easier to transfer and share)

● modular (possible to combine multiple containers that work together)

Containers do not virtualize the hardware, containers must be built using the same

architecture as the machine they are going to be deployed on. For example,

containers built on x86_64 architecture cannot run on the machines using arm64.

5

Containers vs Conda Environment

• Conda environment: solve software dependency issues within
an environment.

• Containers can encapsulate an entire Conda environment
itself. This encapsulation ensures that the software, along with
its specific dependencies and the operating system, can be
transported and replicated on any other system.

6

Benefits of using containers

• Reproducibility

• Portable software environment

• Access to software not compatible with host OS

• Build and use your own software

• Share software among research groups

• Bundles complex software for easy distribution

7

Why Use Containers in HPC Environments?

Portability Across Different Systems

● Consistent Runtime Environment:
○ Containers encapsulate applications and dependencies
○ run consistently across different systems and environments.

● Cross-Platform Compatibility:
○ Easily move workloads between local development environments, on-premises HPC

clusters, and cloud platforms.

Simplified Software Deployment

● Reduced Installation Complexity:
○ Bundles all dependencies, libraries, and binaries, reducing the need for complex

software installations.

8

Why Containers in HPC Environments? (Cont.)

Enhanced Security

● Isolated Environments:
• Containers isolate applications and their dependencies
• reducing the risk of conflicts and security vulnerabilities

● Non-Root Execution:
• Containers like Singularity/Apptainer allow non-root execution
• safer in multi-user HPC environments

Performance Optimization

● Minimal Overhead:
• minimal performance overhead compared to virtual machines
• GPU and Hardware Acceleration

9

Container engines
A container engine is a software tool that automates the process of
running applications in isolated, lightweight environments called
containers.

Docker
• Well established
• docker hub for container sharing

• Problematic with HPC

Singularity, Apptainer
• Designed for HPC, user friendly

• Support for MPI, GPUs

Charliecloud, Shifter, Podman
• Also designed for HPC focus

• Simple to use, but may be less practical for complex workflows
10

Docker vs Singularity(Apptainer)

Docker

• Inside a Docker container the user has escalated privileges, making them
root on the host system

• This is not supported by most administrators of High Performance
Computing (HPC) centers

Singularity/Apptainer
• Integrated with traditional HPC

• Same user inside and outside the container

• User only has root privileges if elevated with sudo

• Run (and modify) existing Docker containers

11

Singularity and Apptainer

Singularity
• Originally developed by Sylabs in 2015

• Continued development by Sylabs with an emphasis on enterprise

features and support

• Remained open source but company interests diverged

• Company (Sylabs) runs the Sylabs Cloud

Apptainer
• Fork of Singularity, started in late 2021

• Funded by the Linux Foundation

• Rootless container build

• Focused on community-driven development and open governance

12

Container registries
Docker Hub

● URL: https://hub.docker.com
● The most popular public container registry with millions of Docker images.
● Hosts official images, community-contributed images, and private repositories.

 NVIDIA NGC (NVIDIA GPU Cloud) Registry

● URL: https://ngc.nvidia.com
● Specialized registry for GPU-optimized containers.
● Offers containers for deep learning, machine learning, HPC, and data analytics, all

optimized for NVIDIA hardware.

 Sylabs Container Library (Singularity)

● URL: https://cloud.sylabs.io/library
● Container registry specifically for Singularity containers.
● Supports secure container images designed for use in high-performance and

scientific computing. 13

https://hub.docker.com
https://ngc.nvidia.com/
https://cloud.sylabs.io/library

Singularity vs Apptainer Commands

14

Container Module on Wulver

apptainer --help

Linux container platform optimized for High Performance

Computing (HPC) and Enterprise Performance Computing (EPC)

Usage:

 apptainer [global options...]

Examples:

 $ apptainer help <command> [<subcommand>]

 $ apptainer help build

 $ apptainer help instance start

$module load apptainer/1.1.9

$apptainer --version

apptainer version 1.1.9

15

The Apptainer Container Image

• The actual container image, executed by Apptainer as a stand-alone

operating system, is stored in a .sif file.

• sif stands for “Singularity Image File”

• The instructions for constructing the .sif file are provided by the .def

definition file

• The .sif file is a compression of all of the files in the stand-alone

operating system that comprises a “container”.

• Apptainer can use the .sif file to reconstitute the container at runtime.

16

Using prebuilt images with Apptainer

• Don’t run the apptainer build command on the login server! Building

the container image can be an intensive process and can consume

the resources of the login server.

• On the High Performance system, launch an interactive Slurm session

• Apptainer pull

• Apptainer build

17

apptainer pull

apptainer pull [pull options...] [output file] <URI>

$apptainer pull pytorch.sif docker://pytorch/pytorch:latest

Pytorch.sif

$apptainer pull docker://pytorch/pytorch:latest

pytorch_latest.sif

18

From a library (This prefix typically refers to images stored in the default Docker library)

$ apptainer pull alpine.sif library://alpine:latest

From Docker Hub

$ apptainer pull tensorflow.sif docker://tensorflow/tensorflow:latest

From Shub

$ apptainer pull apptainer-images.sif shub://vsoch/apptainer-images

apptainer build

“apptainer build” – needs to name the sif file

$ apptainer build my_ubuntu.sif docker://ubuntu:latest

apptainer build [local options...] <IMAGE PATH> <BUILD SPEC>

19

apptainer build - cont

To create the .sif file from the .def file

• Don’t build container from .def file on Wulver. You need to work on your local

system where you have sudo privilege

$sudo apptainer build my-container.sif my-container.def

20

pull vs build

Using the Build Command in Apptainer

1. Must Name Your Container

2. Image Conversion
build will convert your image to the latest Apptainer image format

3. Creating Images
• Create images from other images
• Create images from scratch using a definition file

4. Format Conversion
• Can also use build to convert an image between the container formats

supported by Apptainer.

$ apptainer pull docker://alpine

$ apptainer build alpine.sif docker://alpine

21

Exploring and Inspecting Container Images

apptainer shell: Opens an interactive shell inside the container, allowing you
to run commands manually within the container's environment.

apptainer inspect: Inspect will show you labels, environment variables, apps
and scripts associated with the image determined by the flags you pass. By
default, they will be shown in plain text.

22

Running commands within a container

• apptainer shell <container>

• apptainer exec <container> <command>

• apptainer run <container>

23

apptainer shell

apptainer shell: Opens an interactive shell inside the container, allowing you
to run commands manually within the container's environment.

apptainer shell <path/URL to image>

apptainer shell [shell options...] <container>

$ apptainer shell pytorch.sif
INFO: underlay of /etc/localtime required more than 50 (72) bind mounts
Apptainer> python -c "import torch; print(torch.version.cuda)"
12.1

Apptainer> python
Python 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> print(torch.version.cuda)
12.1 24

apptainer shell: using a direct HTTP URL

Apptainer shell also works with the docker://, library://, and shub://

nvcr.io/nvidia/pytorch:22.12-py3 is the NVIDIA PyTorch container for
version 22.12 with Python 3, hosted on NVIDIA NGC.

$apptainer shell docker://nvcr.io/nvidia/pytorch:22.12-py3

25

http://nvcr.io/nvidia/pytorch:22.12-py3

Users within a Apptainer Container

Once inside of an Apptainer container, you are the same user as you are on the

host system.

$ apptainer shell pytorch.sif

INFO: underlay of /etc/localtime required more than 50 (72) bind mounts

Apptainer> whoami

hz3

Apptainer> id

uid=439576(hz3) gid=439576(hz3) groups=439576(hz3),65534(nogroup)

26

apptainer inspect

apptainer inspect -r: Displays the runscript or the default command that
will be executed when the container is run, without actually running the
container.

$ apptainer inspect -r pytorch.sif

#!/bin/sh

OCI_ENTRYPOINT=''

OCI_CMD='"/bin/bash"'

When SINGULARITY_NO_EVAL set, use OCI compatible behavior that does

not evaluate resolved CMD / ENTRYPOINT / ARGS through the shell, and

does not modify expected quoting behavior of args.

if [-n "$SINGULARITY_NO_EVAL"]; then

… …

27

apptainer exec

apptainer exec starts the container from a specified image and executes a command
inside it.

● Execute a command inside of your container with apptainer exec <path/URL>

<command> apptainer exec myimage.sif python myscript.py

$ grep "^NAME" /etc/os-release

NAME="Red Hat Enterprise Linux"

$ apptainer exec pytorch.sif grep "^NAME" /etc/os-release

INFO:underlay of /etc/localtime required more than 50 (72)

bind mounts

NAME="Ubuntu"

28

apptainer run/exec

run/exec will download if needed and run

■ run: Executes a default command inside the container.

■ exec: Executes a specific application/command inside the

container as specified with ARGS. More flexible than run

command.

apptainer run [run options...] <container> [args...]

apptainer exec [exec options...] <container> <command>

$ apptainer run myimage.sif

$ apptainer run my_web_app.sif

29

Files and directories within a container

How to access outside directories when running a container?

By default, Apptainer binds:

• The user’s home directory ($HOME)
• The current directory when the container is executed ($PWD)
• System-defined paths: /tmp, etc.

You can specify the directories to bind using the --bind or -B flag.

The colon : separates the path to the directory on the host
(/project/hpcadmins/hz3/apptainers/pytorch) from the mounting point (/mnt/) inside
of the container.

$ apptainer shell --bind

/project/hpcadmins/hz3/apptainers/pytorch:/mnt pytorch.sif

30

apptainer exec --bind

1. Executes a command inside the container

2. Bind host directory inside the container

apptainer exec -- bind host_dir:container_dir <path/URL/container_image> <command>

$ apptainer exec --bind

/project/hpcadmins/hz3/apptainers/pytorch:/mnt

pytorch.sif python /mnt/check_cuda_version.py

31

Environment Variables

If you are unsure if you are running inside or outside your container, you can run:

If you get back text, you are inside your container.

echo $APPTAINER_NAME

$ apptainer shell pytorch.sif
INFO: underlay of /etc/localtime required more than 50 (72) bind mounts

Apptainer> echo $APPTAINER_NAME
pytorch.sif

32

Apptainer on GPU Nodes

• --nv flag will setup the basics with CUDA are setup properly for
use within a container

• --nv runtime flag brings the drivers from the host

• need to have a compatible CUDA installed in the container
(older than or the same as the driver)

33

Enabling GPU Support

--nv runtime flag brings the drivers from the host

apptainer exec --nv pytorch.sif python check_cuda_version.py

apptainer shell --nv docker://nvcr.io/nvidia/pytorch:22.12-py3

$ apptainer exec --nv pytorch.sif python -c "import torch;

print('GPU Name: ' + torch.cuda.get_device_name(0))"

INFO: underlay of /etc/localtime required more than 50 (72)

bind mounts

INFO: underlay of /usr/bin/nvidia-smi required more than 50

(276) bind mounts

GPU Name: NVIDIA A100-SXM4-80GB

34

Running Containers Using GPU

If we want to run containers that use GPU, these conditions must be met:

1. Reserve the GPU resources (--partition= gpu)

2. Use an image that is compatible with the use of GPU’s

3. --nv runtime flag

in an interactive session, request a GPU node first:

srun -p gpu -n 1 --ntasks-per-node=8 --qos=standard --account=PI_ucid --mem-
per-cpu=2G --gres=gpu:2 --time=59:00 --pty bash

apptainer shell --nv docker://nvcr.io/nvidia/pytorch:22.12-py3

35

Integrating Containers with HPC Workflows
#!/bin/bash

#SBATCH --job-name=pytorch_job # Job name

#SBATCH --output=output_%j.out # Output file

#SBATCH --error=error_%j.err # Error file

#SBATCH --nodes=1 # Number of nodes

#SBATCH --cpus-per-task=4 # Number of CPUs per task

#SBATCH --time=01:00:00 # Time limit (hh:mm:ss)

#SBATCH --partition=gpu # Partition name (adjust as needed)

#SBATCH --account=PI_ucid # Replace with PI_ucid

#SBATCH --qos=standard

#SBATCH --gres=gpu:2

Load any necessary modules

module load apptainer

Run the tensorflow container

apptainer exec --nv --bind

/project/hpcadmins/hz3/apptainers/tensorflow_container:/workspace

tensorflow_24.08-tf2-py3.sif python3 /workspace/test_tensorflow_gpu.py

36

Submit Jobs with Apptainer and slurm

• For jobs that require GPU resources, ensure that your
SLURM job script includes --gres=gpu:<number_of_gpus>
and that Apptainer is configured to access the GPU
through the NVIDIA runtime.

• Submit your SLURM job script using the sbatch command:
$ sbatch submit.sh

37

MPI job inside an Apptainer container
#!/bin/bash

#SBATCH --job-name=mpi-job

#SBATCH --output=mpi_output.log

#SBATCH --ntasks=4

#SBATCH --cpus-per-task=2

#SBATCH --time=04:00:00

#SBATCH --account=PI_ucid # Replace with PI_ucid

... ...

Load necessary modules

module load apptainer

module load mpi

Execute MPI job inside Apptainer

mpirun apptainer exec /path/to/mpi_container.sif my_mpi_program

38

Container design strategies

Different ways to design containers when the purpose is to
encapsulate pipelines.

Make the orchestration either inside the container, or to make
it from outside the container and simply make the calls to
software located inside the container.

39

Features and Benefits of Containers for
Scientific Computing

• Reproducibility

• Isolation

• Portability

• Scalability

• Rapid Deployment

40

Resources

1. Getting Started with Apptainer (https://apptainer.org/get-started/)

2. Apptainer User Guide (https://apptainer.org/docs/user/main/)

3. Apptainer Official Documentation (https://apptainer.org/documentation/)

4. Apptainer GitHub Repository (https://github.com/apptainer/apptainer)

41

https://apptainer.org/get-started/
https://apptainer.org/docs/user/main/
https://apptainer.org/documentation/
https://github.com/apptainer/apptainer

Resources for Getting Answers at NJIT

Getting Started: Access to Wulver

List of Software: Wulver Software

Installing Python packages via Conda: Conda Documentation

Request Software: HPC Software Installation

Contact: Please visit HPC Contact

Open a ticket: email to hpc@njit.edu

Consult with Research Computing Facilitator: HPC User Assistance

System updates

Read Message of the Day on login

Visit NJIT HPC News

42

https://hpc.njit.edu/clusters/get_started_on_Wulver/
https://hpc.njit.edu/Docs/Software/
https://hpc.njit.edusoftware/programming/python/conda/
https://njit.service-now.com/sp?id=sc_cat_item&sys_id=0746c1f31b6691d04c82cddf034bcbe2&sysparm_category=405f99b41b5b1d507241400abc4bcb6b
https://hpc.njit.edu/about/contact/
mailto:hpc@njit.edu
https://scheduler.zoom.us/d/2k-yd02b/research-computing-facilitator-user-assistance
https://hpc.njit.edu/news/

Questions?

	Slide 1: Introduction to Containers
	Slide 2: Outline
	Slide 3: What is a Container?
	Slide 4: Containers vs Virtual Machine
	Slide 5: Containers vs Virtual Machine - cont
	Slide 6: Containers vs Conda Environment
	Slide 7: Benefits of using containers
	Slide 8: Why Use Containers in HPC Environments?
	Slide 9: Why Containers in HPC Environments? (Cont.)
	Slide 10: Container engines
	Slide 11: Docker vs Singularity(Apptainer)
	Slide 12: Singularity and Apptainer
	Slide 13: Container registries
	Slide 14: Singularity vs Apptainer Commands
	Slide 15: Container Module on Wulver
	Slide 16: The Apptainer Container Image
	Slide 17: Using prebuilt images with Apptainer
	Slide 18: apptainer pull
	Slide 19: apptainer build
	Slide 20: apptainer build - cont
	Slide 21: pull vs build
	Slide 22: Exploring and Inspecting Container Images
	Slide 23: Running commands within a container
	Slide 24: apptainer shell
	Slide 25: apptainer shell: using a direct HTTP URL
	Slide 26: Users within a Apptainer Container
	Slide 27: apptainer inspect
	Slide 28: apptainer exec
	Slide 29: apptainer run/exec
	Slide 30: Files and directories within a container
	Slide 31: apptainer exec --bind
	Slide 32: Environment Variables
	Slide 33: Apptainer on GPU Nodes
	Slide 34: Enabling GPU Support
	Slide 35: Running Containers Using GPU
	Slide 36: Integrating Containers with HPC Workflows
	Slide 37: Submit Jobs with Apptainer and slurm
	Slide 38: MPI job inside an Apptainer container
	Slide 39: Container design strategies
	Slide 40: Features and Benefits of Containers for Scientific Computing
	Slide 41: Resources
	Slide 42: Resources for Getting Answers at NJIT
	Slide 43

