
Python and Conda Environments in HPC:
From Basics to Best Practices

Hui (Julia) Zhao
NJIT High Performance Computing

Outline

• Why High Performance Computing

• How to access Python on Wulver at HPC

• Introduction to Conda environments

• Install, uninstall and upgrade packages

• Best Practices for managing conda environments

• Common Python libraries for scientific computing

Why High Performance Computing?

• Handling Complex Problems

• Big Data Analysis

• Speeding up Research

• Parallel Computing

• Resource Sharing and Collaboration

Why Use Python for HPC?

• Clear Syntax – Simple, readable, and easy to learn

• Extensive Libraries – Optimized packages for scientific computing

• Multi-language Integration – Works seamlessly with C, C++, and Fortran

• Parallel Computing Capabilities – Supports multi-threading & distributed
computing

• Strong Community Support – Actively maintained & widely adopted

Python on Wulver

Installing Python packages

Method 1: Installing Python Packages from Source

1️⃣ Clone the repository

$ git clone https://github.com/pandas-dev/pandas.git

2️⃣ Navigate into the package directory

$ cd pandas

3️⃣ Install the package to a custom location

$ python setup.py install --prefix=/project/$GROUP/$USER/python_pkg/

Possible Installation Error

Error Message:

Traceback (most recent call last):

File "/usr/lib64/python3.6/site-packages/numpy/core/__init__.py", line 16, in
<module>

from . import multiarray

ImportError: libopenblasp.so.0: cannot open shared object file: No such file or
directory

Reason: The required shared library (libopenblasp.so.0) is missing or not found.

Installing Python packages - PiP

Method 2: pip

pip stands for “Preferred Installer Program”
A package manager for Python packages only
Installs packages from the Python Package Index (PyPI)

$ python -m pip install --user <python-module-name> --no-cache-dir

-m <module-name>: Always use python -m pip instead of just pip
Ensures pip runs using the correct Python interpreter
Avoids conflicts with multiple Python installations

--user Flag: Installs packages to user account only
Ensures installation without admin/root privileges
Useful on shared HPC systems

--no-cache-dir Option: Prevents pip from storing package caches in the home directory
Saves disk space, especially in HPC environments

Method 3: Conda

Conda on HPC

• Introduction to Conda

• Conda channels

• Conda environment

• Conda packages

• Sharing environments

Introduction to Conda
• Conda is an open-source package and environment manager

Supports Python and non-Python packages
Works across Windows, macOS, and Linux

• Conda is a powerful package & environment manager

Why use Conda?
Key Benefits

• Simplifies installation, dependency resolution, and reproducibility
• Ideal for scientific computing, data science, and HPC
• Manages dependencies automatically
• Creates isolated environments to prevent package conflicts
• Supports multiple programming languages, including R, C, and Java

Additional Advantages
• Ensures smooth package management across different platforms
• Prevents version conflicts with isolated environments
• Optimized for performance and scalability in scientific applications

Anaconda vs Miniconda vs Conda

• Conda: Open-source package manager

• Anaconda: A software distribution:
open-source (personal) and
Commercial

• Miniconda: minimal installer for conda

Anaconda Portfolio

Load Miniforge Module on Wulver
Load Miniforge3 Module

$ module load Miniforge3

Check Loaded Modules

$ module list

Currently Loaded Modules:

1) easybuild 3) slurm/wulver 5) Miniforge3/24.1.2-0

2) wulver 4) null

What is Miniforge

$ module whatis Miniforge3

Miniforge3/24.1.2-0 : Description: Miniforge is a free minimal installer for conda and
Mamba specific to conda-forge.

Miniforge3/24.1.2-0 : Homepage: https://github.com/conda-forge/miniforge

Miniforge3/24.1.2-0 : URL: https://github.com/conda-forge/miniforge

Conda info

Conda on HPC

• Introduction to Conda

• Conda channels

• Conda environment

• Conda packages

• Sharing environments

Configuring Conda channels
A conda channel is a repository of conda packages

$ conda config --help

$ conda config --show

$ conda config --show channels

channels:
- conda-forge
- defaults

$conda config --describe channels

$conda config --add channels conda-forge

This would add the conda-forge channel to the top of the channel list.

$conda config --append channels conda-forge

This would add the conda-forge to the end of the channel list, giving it the lowest priority.

Conda on HPC

• Introduction to Conda

• Conda channels

• Conda environment

• Conda packages

• Sharing environments

Why create a Conda environment?
A conda environment is a directory that contains a specific collection of conda packages.

Isolation from other projects

Control Over Packages
• Manage versions and dependencies.

Reproducibility
• Consistent setups across systems.

Dependency Management
• Handles Python and non-Python dependencies.

Python Versatility
• Manage and switch Python versions easily.

Ease of Use
• User-friendly commands for project management.

Cross-Platform
• Works on Linux, Windows, and macOS.

Commonly used Conda commands

Conda cheat sheet - Link to Conda Doc for more helpful commands

https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf

Creating Conda Environment
Creating a new conda environment

$ conda create --name my_env

Creating a new conda environment with a specific python version

$ conda create --name my_env python=3.9

Creating a new conda environment with a specific python version and scipy package

$ conda create --name my_env python=3.9 scipy=0.15.0

Creating a new conda environment in difference location with --prefix or -p

$ conda create --prefix /project/$GROUP/$USER/conda_env AAA

Enter, Exit and Remove conda environment

Entering a Conda environment

$ conda activate my_env

$ conda activate /project/$GROUP/$USER/conda_env/AAA

Exiting a Conda environment we are currently in

$ conda deactivate

Removing a Conda environment

$ conda env remove -n my_env

Renaming a Conda environment

$conda rename -n old_env_name new_env_name

List conda environments
A user may list all shared virtual environments and your own private virtual environments

Conda on HPC

• Introduction to Conda

• Conda environment

• Conda channels

• Conda packages

• Sharing environments

Conda packages

List All Installed Packages:

• $ conda list
• Displays all packages installed in the active Conda environment.

List Packages in a Specific Environment:

$ conda list -n env_name or conda list -p /path/to/environment

Search for a Package:

• $ conda search package_name
• Searches for a package across all channels in Conda.

Check for Specific Package Installation:

• $ conda list | grep package_name
• Filters the list of installed packages to show only the entries related to package_name.

A conda package is a compressed tarball file

List packages in all environments

List packages in an environment

List the installed packages for the present environment

(myenv) $ conda list

Installing Conda packages
• Entering a Conda environment

• $ conda activate my_env
• (my_env) $: conda install scipy=1.6 --channel conda-forge

• Create an environment called my_biowork-env and install blast from the bioconda channel:
• $ conda create --name my_biowork-env blast --channel bioconda

• The name flag can be used to specify the environment in which we install the package
• $ conda install -n my_env scipy

$ conda install conda-forge::tensorflow --prefix /project/$GROUP/$USER/my_env

Mamba
Mamba is a reimplementation of the conda package manager in C++ for maximum
efficiency

●Parallel downloading of repository data and packages files using multi-threading

●Libsolv for much faster dependency solving

●a drop-in replacement for conda

●Same commands as conda

●Robust and fast but not 100% drop-in replacement yet (especially for conda-env
commands)

https://mamba.readthedocs.io/en/latest/

https://mamba.readthedocs.io/en/latest/

Mamba on Wulver

Mamba on wulver

https://hpc.njit.edu/Software/programming/python/conda/

Conda on HPC

• Introduction to Conda

• Conda environment

• Conda channels

• Conda packages

• Sharing environments

Exporting Conda environment
Export a conda environment to a new directory or a different machine

1. activate the environment first that you intend to export.
2. export it to a YAML file:

$ conda env export > my_environment.yml

Create an Conda environment from yml file
• First load Miniforge
• Create the environment from the YAML file:

Importing Conda environment to a new location

Use the --prefix or -p option to specify the environment location
• $ conda env create -f my_environment.yml -p /project/$GROUP/$USER/conda_env/my_env
• This will create the environment in the specified directory instead of the default conda

environment directory.

Provide the full path of the environment to activate it.
• $ conda activate /project/$GROUP/$USER/conda_env/my_env
• $ conda env list

• # conda environments:
• base /mmfs1/apps/easybuild/software/Miniforge3/24.1.2-0
• * /project/$GROUP/$USER/conda_env/my_env

Updating a Conda environment
When to update your conda environment?

• One of your core dependencies just released a new version

• You need an additional package for data analysis (add a new dependency).

• You have found a better visualization package and no longer need to old visualization
package

Update the contents of your environment.yml file and run the following command:

$ conda env update --file environment.yml --prune
• --prune option tells Conda to remove any dependencies that are no longer required from

the environment

Best practices

• Use interactive sessions on a compute node
• Use an interactive session on a compute node to install software with Conda
• $ srun -p general -n 1 --qos=standard --account=$PI_ucid --mem-per-cpu=2G --time=59:00 --pty bash #modify srun

options as desired
• $

• Use /project directory with large quotas
• Use /project/$PI/$USER directory other than the home directory for conda environments and packages. Using your

home directory can fill its limited space.
• Managing Conda Cache and changing the default caching behavior

• Avoid installing packages into your base Conda environment

Configuring Conda Package Cache
Default Location: $HOME/.conda/pkgs

Check Current Cache Directory: conda info

Change Cache Location:
• Edit .condarc

pkgs_dirs:
- /path/to/desired/cache/directory

• Use Conda Command:
conda config --add pkgs_dirs /project/$GROUP/$USER/conda_env/pkgs_dirs

• Set Environment Variable:
export CONDA_PKGS_DIRS=/path/to/desired/cache/directory

Verify Change: conda info

More Options: official .condarc user guide

https://docs.conda.io/projects/conda/en/latest/user-guide/configuration/use-condarc.html

PiP vs Conda

 Favor Conda over Pip whenever possible
 Use Conda first, then Pip only if necessary

Why Choose Conda?
• Pre-compiled packages – No need to build from source

Automatic dependency resolution – Handles package conflicts
Better for scientific computing – Optimized for numerical libraries

When to Use Pip?
• If the package is not available in Conda

If you need the latest version of a package $ pip install latest-package

Pip drawbacks
• Dependencies may need manual resolution

Possible compatibility issues with Conda-installed packages

Pip installs in a Conda environment
Recommend

 Use Conda environments for isolation
 Always install Conda packages first, then use pip

 Avoid installing Conda packages after using pip

Create and activate a Conda environment
$ conda create --name my_env pandas
$ conda activate my_env
Install additional packages with pip
(my_env)$ python -m pip install --user multiregex

Recreate the environment if you need to modify packages after using pip
 Use --no-cache-dir to prevent pip from filling your home directory

(my_env)$ python -m pip install --no-cache-dir package_name

Refer to Conda guide for using pip in a Conda environment

https://www.anaconda.com/blog/using-pip-in-a-conda-environment

Common Python libraries for scientific computing
Library

Numpy Multidimensional arrays, Broadcasting,
Vectorization

Mathematical operations, Basic statistics

SciPy Numerical integration, Optimization,
Linear algebra

Solving differential equations, Signal
processing

Matplotlib
2D and 3D plotting, Customizable plots Visualizing data, Scientific charts

Pandas DataFrame and Series, Data
manipulation, Cleaning

Data analysis, Time series analysis

Scikit-learn Machine learning algorithms, Data
preprocessing tools

Classification, Regression, Clustering

TensorFlow Computational graph, Automatic
differentiation

Building deep learning models, Neural
networks

PyTorch Dynamic computational graph,
TorchScript for deployment

Machine learning, Computer vision

Key features Common Use Case

Example - install tensorflow-gpu

https://hpc.njit.edu/Software/programming/python/conda/#install-tensorflow-with-gpu

$conda create --name tensorflow python=3.9

$conda activate tensorflow

$conda install -c anaconda tensorflow-gpu numpy=1.21.6

Simple TensorFlow test program to make sure the virtual env can access a GPU.

https://hpc.njit.edu/Software/programming/python/conda/

Example - Install PyTorch with GPU
$conda create --name torch-cuda python=3.10

$conda activate torch-cuda

$conda install -c "nvidia/label/cuda-12.2.0" cuda-toolkit

$conda install -c pytorch -c nvidia pytorch torchvision torchaudio pytorch-cuda -y

https://hpc.njit.edu/Software/programming/python/conda/#install-tensorflow-with-gpu

https://hpc.njit.edu/Software/programming/python/conda/

Connect with Us

• Open a ticket using email: hpc@njit.edu

• Request Software: HPC Software Installation

• Consult with Research Computing Facilitator: HPC User Assistance

• Further information: HPC at NJIT

• System updates
• Read Message of the Day on login
• Visit NJIT HPC News

https://mailto:hpc@njit.edu
https://njit.service-now.com/sp?id=sc_cat_item&sys_id=0746c1f31b6691d04c82cddf034bcbe2&sysparm_category=405f99b41b5b1d507241400abc4bcb6b
https://scheduler.zoom.us/d/2k-yd02b/research-computing-facilitator-user-assistance
https://hpc.njit.edu/
https://hpc.njit.edu/news/

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

